Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 160: 213850, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38626580

RESUMO

Decellularized extracellular matrix (dECM) is an excellent natural source for 3D bioprinting materials due to its inherent cell compatibility. In vat photopolymerization, the use of dECM-based bioresins is just emerging, and extensive research is needed to fully exploit their potential. In this study, two distinct methacryloyl-functionalized, photocrosslinkable dECM-based bioresins were prepared from digested porcine liver dECM through functionalization with glycidyl methacrylate (GMA) or conventional methacrylic anhydride (MA) under mild conditions for systematic comparison. Although the chemical modifications did not significantly affect the structural integrity of the dECM proteins, mammalian cells encapsulated in the respective hydrogels performed differently in long-term culture. In either case, photocrosslinking during 3D (bio)printing resulted in transparent, highly swollen, and soft hydrogels with good shape fidelity, excellent biomimetic properties and tunable mechanical properties (~ 0.2-2.5 kPa). Interestingly, at a similar degree of functionalization (DOF ~ 81.5-83.5 %), the dECM-GMA resin showed faster photocrosslinking kinetics in photorheology resulting in lower final stiffness and faster enzymatic biodegradation compared to the dECM-MA gels, yet comparable network homogeneity as assessed via Brillouin imaging. While human hepatic HepaRG cells exhibited comparable cell viability directly after 3D bioprinting within both materials, cell proliferation and spreading were clearly enhanced in the softer dECM-GMA hydrogels at a comparable degree of crosslinking. These differences were attributed to the additional hydrophilicity introduced to dECM via methacryloylation through GMA compared to MA. Due to its excellent printability and cytocompatibility, the functional porcine liver dECM-GMA biomaterial enables the advanced biofabrication of soft 3D tissue analogs using vat photopolymerization-based bioprinting.

2.
PLoS Comput Biol ; 20(3): e1011918, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442108

RESUMO

Processive enzymes like polymerases or ribosomes are often studied in bulk experiments by monitoring time-dependent signals, such as fluorescence time traces. However, due to biomolecular process stochasticity, ensemble signals may lack the distinct features of single-molecule signals. Here, we demonstrate that, under certain conditions, bulk signals from processive reactions can be decomposed to unveil hidden information about individual reaction steps. Using mRNA translation as a case study, we show that decomposing a noisy ensemble signal generated by the translation of mRNAs with more than a few codons is an ill-posed problem, addressable through Tikhonov regularization. We apply our method to the fluorescence signatures of in-vitro translated LepB mRNA and determine codon-position dependent translation rates and corresponding state-specific fluorescence intensities. We find a significant change in fluorescence intensity after the fourth and the fifth peptide bond formation, and show that both codon position and encoded amino acid have an effect on the elongation rate. This demonstrates that our approach enhances the information content extracted from bulk experiments, thereby expanding the range of these time- and cost-efficient methods.


Assuntos
Biossíntese de Proteínas , Ribossomos , Códon/genética , Códon/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/metabolismo , Fluorescência
3.
Biomed Opt Express ; 14(9): 4579-4593, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791264

RESUMO

Triple-negative breast cancer is an aggressive subtype of breast cancer that has a poor five-year survival rate. The tumor's extracellular matrix is a major compartment of its microenvironment and influences the proliferation, migration and the formation of metastases. The study of such dependencies requires methods to analyze the tumor matrix in its native form. In this work, the limits of SHG-microscopy, namely limited penetration depth, sample size and specificity, are addressed by correlative three-dimensional imaging. We present the combination of scanning laser optical tomography (SLOT) and multiphoton microscopy, to depict the matrix collagen on different scales. Both methods can be used complementarily to generate full-volume views and allow for in-depth analysis. Additionally, we explore the use of SHG as a contrast mechanism for complex samples in SLOT. It was possible to depict the overall collagen structure and specific fibers using marker free imaging on different scales. An appropriate sample preparation enables the fixation of the structures while simultaneously conserving the fluorescence of antibody staining. We find that SHG is a suitable contrast mechanism to depict matrix collagen even in complex samples and using SLOT. The insights presented here shall further facilitate the study of the tumor extracellular matrix by correlative 3d imaging.

4.
Adv Healthc Mater ; 12(10): e2202290, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36564363

RESUMO

Oxidative stress is a cause for numerous diseases and aging processes. Thus, researchers are keen to tune the level of intracellular stress and to learn from that. An unusual approach is presented here. The methodology involves multifunctional surfactants. Although their molecular design is nonbiological-a fullerenol head group attached covalently to pi-conjugated dyes-the surfactants possess superior biocompatibility. Using an intrinsic fluorescence signal as a probe, it is shown that the amphiphiles become incorporated into the Caco-2 cells. There, they are able to exhibit additional functions. The compound reduces cellular stress in dark reaction pathways. The antagonistic property is activated under irradiation, the photocatalytic production of reactive oxygen species (ROS), resulting in cell damage. The feature is activated even by near-infrared light (NIR-light) via a two-photon process. The properties as molecular semiconductors lead to a trojan horse situation and allows the programming of the spatial distribution of cytotoxicity.


Assuntos
Estresse Oxidativo , Tensoativos , Humanos , Células CACO-2 , Espécies Reativas de Oxigênio/metabolismo , Semicondutores
6.
Plant Methods ; 18(1): 82, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690858

RESUMO

Lasers enable modification of living and non-living matter with submicron precision in a contact-free manner which has raised the interest of researchers for decades. Accordingly, laser technologies have drawn interest across disciplines. They have been established as a valuable tool to permeabilize cellular membranes for molecular delivery in a process termed photoinjection. Laser-based molecular delivery was first reported in 1984, when normal kidney cells were successfully transfected with a frequency-multiplied Nd:YAG laser. Due to the rapid development of optical technologies, far more sophisticated laser platforms have become available. In particular, near infrared femtosecond (NIR fs) laser sources enable an increasing progress of laser-based molecular delivery procedures and opened up multiple variations and applications of this technique.This review is intended to provide a plant science audience with the physical principles as well as the application potentials of laser-based molecular delivery. The historical origins and technical development of laser-based molecular delivery are summarized and the principle physical processes involved in these approaches and their implications for practical use are introduced. Successful cases of laser-based molecular delivery in plant science will be reviewed in detail, and the specific hurdles that plant materials pose will be discussed. Finally, we will give an outlook on current limitations and possible future applications of laser-based molecular delivery in the field of plant science.

7.
Lasers Med Sci ; 37(3): 1891-1897, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34713366

RESUMO

BACKGROUND: In this study, the tear resistance of porcine lens capsules after continuous curvilinear capsulorhexis (CCC) and femtosecond (fs)-laser-assisted capsulotomy for cataract surgery (FLC) with different laser parameters is measured with a custom-made testing setup. METHODS: Forty-five fresh porcine lenses were randomly chosen for CCC (n = 15) or FLC 1 (n = 15) and FLC 2 (n = 15). The FLC 1-group was treated with smaller spot distances than the FLC 2-group. The force necessary to break the opening of the anterior capsule and the maximum displacement were measured. RESULTS: The mean tear resistance of the CCC-group (150 ± 70 mN) was higher than that of the FLC 1-group (60 ± 20 mN) and the FLC 2-group (30 ± 20 mN). CONCLUSION: It could be shown that CCC leads to a significantly higher tear resistance of the opening than FLC in porcine lenses. The femtosecond laser group demonstrated that smaller spot distances lead to a higher tear resistance.


Assuntos
Cápsula Anterior do Cristalino , Extração de Catarata , Terapia a Laser , Animais , Cápsula Anterior do Cristalino/cirurgia , Capsulorrexe , Lasers , Suínos
8.
Exp Eye Res ; 213: 108842, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34793829

RESUMO

Avoiding damage of the endothelial cells, especially in thin corneas, remains a challenge in corneal collagen crosslinking (CXL). Knowledge of the riboflavin gradients and the UV absorption characteristics after topical application of riboflavin in concentrations ranging from 0.1% to 0.5% could optimize the treatment. In this study, we present a model to calculate the UV-intensity depending on the corneal thickness. Ten groups of de-epithelialized porcine corneas were divided into 2 subgroups. Five groups received an imbibition of 10 min and the other five groups for 30 min. The applied riboflavin concentrations were 0.1%, 0.2%, 0.3%, 0.4% and 0.5% diluted in a 15% dextran solution for each subgroup. After the imbibition process, two-photon fluorescence microscopy was used to determine fluorescence intensity, which was compared to samples after saturation, yielding the absolute riboflavin concentration gradient of the cornea. The extinction coefficient of riboflavin solutions was measured using a spectrophotometer. Combining the obtained riboflavin concentrations and the extinction coefficients, a depth-dependent UV-intensity profile was calculated for each group. With increasing corneal depth, the riboflavin concentration decreased for all imbibition solutions and application times. The diffusion coefficients of 10 min imbibition time were higher than for 30 min. A higher RF concentration and a longer imbibition time resulted in higher UV-absorption and a lower UV-intensity in the depth of the cornea. Calculated UV-transmission was 6 percentage points lower compared to the measured transmission. By increasing the riboflavin concentration of the imbibition solution, a substantially higher UV-absorption inside the cornea is achieved. This offers a simple treatment option to control the depth of crosslinking e.g. in thin corneas, resulting in a lower risk of endothelial damage.


Assuntos
Absorção de Radiação/efeitos dos fármacos , Substância Própria/metabolismo , Fármacos Fotossensibilizantes/farmacocinética , Riboflavina/farmacocinética , Raios Ultravioleta , Administração Oftálmica , Animais , Paquimetria Corneana , Substância Própria/efeitos da radiação , Reagentes de Ligações Cruzadas , Microscopia de Fluorescência por Excitação Multifotônica , Soluções Oftálmicas , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Riboflavina/administração & dosagem , Suínos
9.
Biomed Opt Express ; 11(11): 6536-6550, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282507

RESUMO

Light as a tool in medical therapy and biological research has been studied extensively and its application is subject to continuous improvement. However, safe and efficient application of light-based methods in photomedicine or optogenetics requires knowledge about the optical properties of the target tissue as well as the response characteristics of the stimulated cells. Here, we used tissue phantoms and a heart-like light-sensitive cell line to investigate optogenetic stimulation through tissue layers. The input power necessary for successful stimulation could be described as a function of phantom thickness. A model of light transmission through the tissue phantoms gives insights into the expected stimulation efficiency. Cell-type specific effects are identified that result in deviations of the stimulation threshold from the modelled predictions. This study provides insights into the complex interplay between light, tissue and cells during deep-tissue optogenetics. It can serve as an orientation for safe implementation of light-based methods in vivo.

10.
ACS Appl Bio Mater ; 3(10): 7011-7020, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35019360

RESUMO

Hydrogels are favored materials in tissue engineering as they can be used to imitate tissues, provide scaffolds, and guide cell behavior. Recent advances in the field of optogenetics have created a need for biocompatible optical waveguides, and hydrogels have been investigated to meet these requirements. However, combining favorable waveguiding characteristics, high biocompatibility, and controllable bioactivity in a single device remains challenging. Here, we investigate the use of poly(ethylene glycol) hydrogels as carriers and illumination systems for in vitro cell culture. We present a comprehensive and reproducible protocol for selective bioactivation of the hydrogels, achieving high proliferation rates and strong cell adhesion on the treated surface. A cell model expressing the photoconvertible fluorescent protein Dendra2 confirmed that light-cell interactions occur at the hydrogel surface. Monte Carlo simulations were performed as a tool to predict the extent of these interactions. This study demonstrates a hydrogel-based waveguiding system for targeted cell stimulation in vitro and potentially in vivo environments.

11.
Sensors (Basel) ; 19(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597248

RESUMO

Hydrogel waveguides have found increased use for variety of applications where biocompatibility and flexibility are important. In this work, we demonstrate the use of polyethylene glycol diacrylate (PEGDA) waveguides to realize a monolithic lab-on-a-chip device. We performed a comprehensive study on the swelling and optical properties for different chain lengths and concentrations in order to realize an integrated biocompatible waveguide in a microfluidic device for chemical sensing. Waveguiding properties of PEGDA hydrogel were used to guide excitation light into a microfluidic channel to measure the fluorescence emission profile of rhodamine 6G as well as collect the fluorescence signal from the same device. Overall, this work shows the potential of hydrogel waveguides to facilitate delivery and collection of optical signals for potential use in wearable and implantable lab-on-a-chip devices.


Assuntos
Técnicas Biossensoriais , Hidrogéis/química , Dispositivos Lab-On-A-Chip , Rodaminas/química , Fluorescência , Microfluídica , Polietilenoglicóis/química , Impressão Tridimensional
12.
Sci Rep ; 8(1): 6533, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695746

RESUMO

Stimulation of neuronal cells generally resorts to electric signals. Recent advances in laser-based stimulation methods could present an alternative with superior spatiotemporal resolution. The avoidance of electronic crosstalk makes these methods attractive for in vivo therapeutic application. In particular, nano-mediators, such as gold nanoparticles, can be used to transfer the energy from a laser pulse to the cell membrane and subsequently activate excitable cells. Although the underlying mechanisms of neuronal activation have been widely unraveled, the overall effect on the targeted cell is not understood. Little is known about the physiological and pathophysiological impact of a laser pulse targeted onto nanoabsorbers on the cell membrane. Here, we analyzed the reaction of the neuronal murine cell line Neuro-2A and murine primary cortical neurons to gold nanoparticle mediated laser stimulation. Our study reveals a severe, complex and cell-type independent stress response after laser irradiation, emphasizing the need for a thorough assessment of this approach's efficacy and safety.


Assuntos
Ouro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Neurônios/efeitos dos fármacos , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Lasers , Camundongos
13.
Sci Rep ; 8(1): 187, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317662

RESUMO

The integration of metal microstructures and soft materials is promising for the realization of novel optical and biomedical devices owing to the flexibility and biocompatibility of the latter. Nevertheless, the fabrication of three-dimensional metal structures within a soft material is still challenging. In this study, we demonstrate the fabrication of a silver diffraction grating inside a biocompatible poly(ethylene glycol) diacrylate (PEGDA) hydrogel by using a 522-nm femtosecond laser via multi-photon photoreduction of silver ions. The optical diffraction pattern obtained with the grating showed equally spaced diffraction spots, which indicated that a regular, periodic silver grating was formed. Notably, the distance between the diffraction spots changed when the water content in the hydrogel was reduced. The grating period decreased when the hydrogel shrank owing to the loss of water, but the straight shapes of the line structures were preserved, which demonstrated the optical tunability of the fabricated structure. Our results demonstrate the potential of the femtosecond laser-based photoreduction technique for the fabrication of novel tunable optical devices as well as highly precise structures.

14.
Biomed Opt Express ; 8(10): 4756-4771, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29082100

RESUMO

Laser-exposed plasmonic substrates permeabilize the plasma membrane of cells when in close contact to deliver cell-impermeable cargo. While studies have determined the cargo delivery efficiency and viability of laser-exposed plasmonic substrates, morphological changes in a cell have not been quantified. We porated myoblast C2C12 cells on a plasmonic pyramid array using a 532-nm laser with 850-ps pulse length and time-lapse fluorescence imaging to quantify cellular changes. We obtain a poration efficiency of 80%, viability of 90%, and a pore radius of 20 nm. We quantified area changes in the plasma membrane attached to the substrate (10% decrease), nucleus (5 - 10% decrease), and cytoplasm (5 - 10% decrease) over 1 h after laser treatment. Cytoskeleton fibers show a change of 50% in the alignment, or coherency, of fibers, which stabilizes after 10 mins. We investigate structural and morphological changes due to the poration process to enable the safe development of this technique for therapeutic applications.

15.
J Biophotonics ; 10(12): 1723-1731, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28464530

RESUMO

Micro-/nanosphere-mediated femtosecond laser cell perforation is one of the high throughput technologies used for macro-molecule-delivery into multiple cells. We have demonstrated the delivery of plasmid-DNA/liposome complexes into cells using biodegradable polymer microspheres and a femtosecond laser and investigated the intracellular localization of the complexes by delivering fluorescence-labeled plasmid-DNA/liposome complexes into cells. The utilization of liposomes increases the number of complexes delivered into the cytoplasm by laser illumination, which contributed to the increased transfection rate. In the experiment involving polystyrene (PS) microspheres of different diameters, the fluorescence of the complexes was detected in the nucleus as well as cytoplasm after laser illumination for PS microspheres of 3.0 µm diameter. The direct delivery of complexes into the nucleus is probably attributed to the enhancement of the nuclear membrane permeability by the enhanced optical field obtained close to the nucleus. These revelations on the intracellular localization of foreign DNA would provide effective laser-based transfection. Picture: Intranuclear delivery of plasmid-DNA/liposome complexes by utilizing dielectric microspheres and a femtosecond laser.


Assuntos
DNA/química , DNA/metabolismo , Portadores de Fármacos/química , Espaço Intracelular/metabolismo , Lasers , Microesferas , Plasmídeos/genética , Transporte Biológico , Linhagem Celular Tumoral , DNA/genética , Portadores de Fármacos/metabolismo , Humanos , Lipossomos
16.
PLoS One ; 12(4): e0175431, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28388662

RESUMO

The mammalian cochlea is a complex macroscopic structure due to its helical shape and the microscopic arrangements of the individual layers of cells. To improve the outcomes of hearing restoration in deaf patients, it is important to understand the anatomic structure and composition of the cochlea ex vivo. Hitherto, only one histological technique based on confocal laser scanning microscopy and optical clearing has been developed for in toto optical imaging of the murine cochlea. However, with a growing size of the specimen, e.g., human cochlea, this technique reaches its limitations. Here, we demonstrate scanning laser optical tomography (SLOT) as a valuable imaging technique to visualize the murine cochlea in toto without any physical slicing. This technique can also be applied in larger specimens up to cm3 such as the human cochlea. Furthermore, immunolabeling allows visualization of inner hair cells (otoferlin) or spiral ganglion cells (neurofilament) within the whole cochlea. After image reconstruction, the 3D dataset was used for digital segmentation of the labeled region. As a result, quantitative analysis of position, length and curvature of the labeled region was possible. This is of high interest in order to understand the interaction of cochlear implants (CI) and cells in more detail.


Assuntos
Cóclea/diagnóstico por imagem , Tomografia Óptica/métodos , Animais , Camundongos
17.
Biomed Opt Express ; 8(1): 177-192, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28101410

RESUMO

Can photothermal gold nanoparticle mediated laser manipulation be applied to induce cardiac contraction? Based on our previous work, we present a novel concept of cell stimulation. A 532 nm picosecond laser was employed to heat gold nanoparticles on cardiomyocytes. This leads to calcium oscillations in the HL-1 cardiomyocyte cell line. As calcium is connected to the contractility, we aimed to alter the contraction rate of native and stem cell derived cardiomyocytes. A contraction rate increase was particularly observed in calcium containing buffer with neonatal rat cardiomyocytes. Consequently, the study provides conceptual ideas for a light based, nanoparticle mediated stimulation system.

18.
Opt Lett ; 41(7): 1392-5, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192244

RESUMO

The fabrication of three-dimensional (3D) metal microstructures in a synthetic polymer-based hydrogel is demonstrated by femtosecond laser-induced photoreduction. The linear-shaped silver structure of approximately 2 micrometers in diameter is fabricated inside a biocompatible poly(ethylene glycol) diacrylate (PEGDA) hydrogel. The silver structure is observed and confirmed by scanning electron microscopy (SEM) and elemental analysis using energy-dispersive X-ray spectroscopy (EDX). Shrinking and swelling of the fabricated structure is also demonstrated experimentally, which shows the potential of the present method for realizing 3D flexible electronic and optical devices, as well as for fabricating highly integrated devices at submicron scales.

19.
J Biomed Opt ; 21(5): 55001, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27156714

RESUMO

The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lasers , Microfluídica/métodos , Microesferas , Animais , Células Cultivadas , Sistemas de Liberação de Medicamentos/instrumentação , Microfluídica/instrumentação , Polímeros
20.
J Biomed Opt ; 20(11): 115005, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26562032

RESUMO

Laser-based transfection techniques have proven high applicability in several cell biologic applications. The delivery of different molecules using these techniques has been extensively investigated. In particular, new high-throughput approaches such as gold nanoparticle­mediated laser transfection allow efficient delivery of antisense molecules or proteins into cells preserving high cell viabilities. However, the cellular response to the perforation procedure is not well understood. We herein analyzed the perforation kinetics of single cells during resonant gold nanoparticle­mediated laser manipulation with an 850-ps laser system at a wavelength of 532 nm. Inflow velocity of propidium iodide into manipulated cells reached a maximum within a few seconds. Experiments based on the inflow of FM4-64 indicated that the membrane remains permeable for a few minutes for small molecules. To further characterize the cellular response postmanipulation, we analyzed levels of oxidative heat or general stress. Although we observed an increased formation of reactive oxygen species by an increase of dichlorofluorescein fluorescence, heat shock protein 70 was not upregulated in laser-treated cells. Additionally, no evidence of stress granule formation was visible by immunofluorescence staining. The data provided in this study help to identify the cellular reactions to gold nanoparticle­mediated laser manipulation.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Eletroporação/métodos , Ouro/efeitos da radiação , Nanopartículas Metálicas/efeitos da radiação , Pinças Ópticas , Transfecção/métodos , Permeabilidade da Membrana Celular/efeitos da radiação , Ouro/química , Nanopartículas Metálicas/química , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...